

PROSUMER'S UNDERSTANDING TOWARDS SOCIAL MEDIA MARKETING: AN EMPIRICAL STUDY

S. K. Kesharwani

M.P Sarkar

S. Oberoi

Abstract:

The paper gives a fleeting look at digital marketing in a holistic outlook as a pioneering way to create customer value to preserve and perk up stronger and lasting customer relationships met with maintaining societal values and problems at the pinnacle. The objective of the study is to explore the Prosumer's understanding of digital marketing through social media. The research work reported in the paper is a pilot study in which a structured questionnaire is developed using Google docs. With the era of digitization, the entire definition of marketing and consumers has evolved and completely opposite of conventional marketing. The present study concludes that the marketers need to focus on the relationship-based connections with the Prosumers. The present study will help the marketers to apprehend the consumer's behaviour well and also make possible for them to target consumers easily and effectively.

Keywords: Digitization, Marketing, Prosumers, Relationship, Social Media

1. INTRODUCTION

The internet and Social network, the new information and communication technologies, has changed the market dynamics, increased the competitive pressures on the firms [1] and has empowered the consumers. Such technological developments have changed the consumption habits of the consumers by providing them a larger platform to access, choose and buy goods and services [2]. Consumers has evolved as 'Prosumers' now, and its definition has taken a dramatic change. The concept of 'Prosumers' was developed by, "Alvin Toffler", since then, it has been defined by many other authors in context of marketing and media. It has largely influenced how marketers operate in terms of strategy and tactics due to new challenges for them [3]. Social media helps firms and consumers to connect which enables to create brand loyalty [4] [5]. It also provides a platform to promote goods and services and to set up online communities of brand followers [5]. Social media offers variety of benefits to firms like brand popularity [6] word to mouth communication [7] sales enhancement [8] and sharing of business information [9]. With the evolution of social media, it helps firms develop marketing strategies through trust building mechanisms and affects prospective customer's intention to buy online goods and services.

The present study intends to make relevant contribution in social media marketing by surveying the social network users about their attitude and their sustainable behaviour. The present study will deepen the knowledge of the firms which they require to strengthen their recourse to social media to achieve strategic goals.

Objectives

1. To identify the factors impacting the level of attitude commitment and sustainable behaviour of Prosumers.
2. To examine the impact of levels of attitude commitment and sustainable behaviour of Prosumers towards social

media marketing.

In the present context, we have formulated and aligned following hypotheses with the objectives:

- **H01:** There is a significant impact of levels of attitude commitment of Prosumers towards social media marketing.
- **H02:** There is a significant impact of sustainable behavior of Prosumers towards social media marketing.

2. REVIEW OF LITERATURE

A study examined the efficiency of social media marketing. A survey was conducted and 150 responses of social networkers were collected. Regression analysis result of the study depicted that there is no variability among social media network users on the basis of gender. The findings also highlighted that social media marketing can be an effective tool only when firms will provide concrete and timely information needed by the consumers [10]. [11] identified the strategies of marketing through social media. The findings of the study concluded that social platforms have their own ecosystem and marketers need to make sure that they customize messages across sites which enable to reach social networking users. Many studies reviewed the development of social networks and to find the power of those networks among consumers. It was established that social media platforms confirmed that marketers should not ignore them and they need to re-think how they will approach customer and via which channels. [12] Studied the influence of social media on consumers. Data was collected through a questionnaire and total of 237 valid responses were received. Structural Equation Modeling (SEM) results concluded that social media enables social interaction with consumers which enhances the trust and intention to buy. [13] Discovered that content engineering in social media has significant impact on user's engagement measured by likes and comments. The findings also revealed that emotional and philanthropic content

has positive impact whereas product information content has negative content on consumer engagement. [14] Propounded that majority of past literature focus on understanding the consumer behaviour in social media as modern marketing is customer centric. Many past studies revealed that majority of the respondent's behaviour is being influenced by social media marketing and marketers should use this medium for effective positioning of their products to get competitive advantage. [15] Inspected the relationship among social media marketing and consumer decision making process and explored a strong linear relationship between the two. An empirical study on 566 respondents from Pune concluded that electronic word of mouth and social image influenced the consumer's perception which provided opportunities of branding through social media [16]. A Study on 217 respondents from semi-urban city of Karnataka revealed that two factors, Creativity and Informativeness has a significant influence on the attitude of the consumers towards social media advertisements, but the results showed differences among male and female responses towards the social media advertisements [17]. A survey on 352 Tunisian Facebook users concluded that there is a significant relationship between informativeness, credibility and social media advertising value. The positive value affects consumer's attitude towards social media advertising and their behavioral responses [18].

A study investigated the potential of social media advertising as an effective tool which influences the purchasing decisions of customers and concluded that new marketing approach is more consumers centric and customers create additional value

through social interactions and collaborations on Internet [19]. An exploratory approach discovered that people actively use social media to gain information regarding fashion, but their intention to purchase, perceptions and behavior is influenced by variety of internal and external motivations. It was also revealed that social media is not only the source that influence the decision making process of consumers [20]. Using a quantitative approach, an analysis on 400 females from Jordan, indicated that social media advertising influences an impulsive purchasing behavior to great extent. It was also found that variety seeking is the most influential factor which supports brand switching and decreases the brand loyalty [21].

3. DATA AND METHODOLOGY

The study mainly focuses on the Primary data for which a Questionnaire (30 items) was formulated using Google docs. All the items are categorized under 8 variables i.e. Attitude Commitment towards social media (AC), (Eco-friendly products (EFP), Recycling (R), Zero waste (Z), Organic (O), Anti-materialism (AM), Lifestyle (L), Charity (C). In order to collect data, a Sample size of 107 social media users is being taken from Delhi on the basis of Convenience Sampling method and an Electronic Questionnaire is being circulated to them. Various statistical Techniques are used to analyze the data collected using a Questionnaire. In order to test the Hypothesis and to achieve the objectives, hence a Pilot Study using Factor Analysis is being carried out for the same. To test the Reliability and Validity, Cronbach Alpha is being used.

4. ANALYSIS AND RESULTS OF DATA

4.1 Results of Cronbach Alpha

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.972	.973	30

Table: 1 Reliability Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	-Corrected Item Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
AC1	109.32	507.484	680.	.	971.
AC2	109.24	502.825	770.	.	971.
AC3	109.30	517.151	552.	.	972.
AC4	109.58	503.454	689.	.	971.
AC5	109.29	509.435	682.	.	971.
AC6	109.53	513.534	578.	.	972.
AC7	109.45	509.514	719.	.	971.
AC8	109.65	510.237	629.	.	972.
AC9	109.50	511.219	624.	.	972.
AC10	109.46	511.673	694.	.	971.
EFP1	109.06	506.996	808.	.	971.

EFP2	108.70	506.079	864.	.	970.
EFP3	109.54	501.942	727.	.	971.
EFP4	108.99	509.549	795.	.	971.
R1	109.05	505.267	840.	.	970.
R2	109.21	505.573	792.	.	971.
R3	109.64	510.855	611.	.	972.
R4	109.45	507.904	731.	.	971.
Z1	109.15	508.614	823.	.	971.
Z2	109.33	508.800	776.	.	971.
Z3	109.49	506.028	770.	.	971.
O1	109.23	504.011	797.	.	971.
O2	108.94	505.355	797.	.	971.
O3	109.28	505.552	843.	.	970.
AM1	109.25	509.379	727.	.	971.
AM2	109.11	513.779	641.	.	972.
L1	108.85	507.851	846.	.	971.
L2	109.44	510.853	576.	.	972.
C1	108.88	508.990	739.	.	971.
C2	109.28	512.211	766.	.	971.

Table: 2 Item-Total Statistics

It can be seen that Cronbach's alpha is 0.972 (Table 1), which indicates a high level of internal consistency. We can see that removal of any question, except items AC3, AC6, AC8, AC9, R3, AM2 and L2 would result in a lower Cronbach's alpha.

4.2 Results of Factor Analysis

Therefore, it won't be desirable to remove these questions. After the successful reliability test we applied the Exploratory Factor Analysis (EFA).

Variables	AC1	AC2	AC3	AC4	AC5	AC6	AC7	AC8	AC9	AC10	EFP1	EFP2	EFP3	EFP4	R1	R2	R3	R4	Z1	Z2	Z3	O1	O2	O3	AM1	AM2	L1	L2	C1	C2
AC1	1	0.653	0.46	0.581	0.635	0.415	0.42	0.412	0.314	0.449	0.636	0.632	0.555	0.605	0.59	0.473	0.253	0.397	0.501	0.388	0.535	0.583	0.541	0.58	0.602	0.521	0.585	0.47	0.532	0.469
AC2	0.653	1	0.346	0.546	0.689	0.344	0.602	0.606	0.437	0.517	0.633	0.608	0.637	0.641	0.682	0.679	0.449	0.46	0.609	0.66	0.616	0.694	0.633	0.69	0.661	0.449	0.549	0.413	0.595	0.586
AC3	0.46	0.346	1	0.495	0.447	0.488	0.394	0.42	0.31	0.26	0.522	0.582	0.269	0.549	0.398	0.388	0.35	0.352	0.54	0.351	0.386	0.409	0.38	0.44	0.443	0.541	0.588	0.255	0.394	0.396
AC4	0.581	0.546	0.495	1	0.533	0.364	0.489	0.507	0.538	0.412	0.533	0.612	0.652	0.499	0.585	0.494	0.337	0.487	0.545	0.461	0.673	0.606	0.563	0.543	0.465	0.333	0.504	0.554	0.46	0.562
AC5	0.635	0.689	0.447	0.533	1	0.448	0.469	0.47	0.363	0.404	0.502	0.606	0.579	0.583	0.648	0.464	0.507	0.489	0.591	0.491	0.318	0.489	0.508	0.467	0.622	0.528	0.553	0.363	0.522	0.534
AC6	0.415	0.344	0.488	0.364	0.448	1	0.679	0.282	0.469	0.347	0.562	0.642	0.378	0.357	0.437	0.375	0.252	0.657	0.457	0.32	0.503	0.39	0.475	0.521	0.372	0.5	0.581	0.276	0.405	0.427
AC7	0.42	0.602	0.394	0.489	0.469	0.679	1	0.437	0.602	0.464	0.595	0.676	0.566	0.525	0.556	0.577	0.426	0.736	0.533	0.493	0.655	0.551	0.55	0.63	0.486	0.569	0.617	0.34	0.47	0.519
AC8	0.412	0.606	0.42	0.507	0.47	0.282	0.437	1	0.279	0.511	0.462	0.538	0.613	0.587	0.621	0.471	0.436	0.347	0.523	0.574	0.492	0.523	0.529	0.625	0.386	0.247	0.445	0.439	0.4	0.528
AC9	0.314	0.437	0.31	0.538	0.363	0.469	0.602	0.279	1	0.35	0.466	0.535	0.556	0.345	0.555	0.509	0.422	0.675	0.455	0.511	0.61	0.567	0.43	0.505	0.469	0.505	0.531	0.274	0.432	0.611
AC10	0.449	0.517	0.26	0.412	0.404	0.347	0.464	0.511	0.35	1	0.639	0.609	0.46	0.588	0.627	0.646	0.574	0.502	0.653	0.6	0.53	0.577	0.605	0.663	0.478	0.339	0.612	0.53	0.623	0.588
EFP1	0.636	0.633	0.522	0.533	0.502	0.562	0.595	0.462	0.466	0.639	1	0.815	0.506	0.727	0.692	0.639	0.55	0.639	0.614	0.684	0.706	0.667	0.715	0.579	0.541	0.742	0.441	0.641	0.561	
EFP2	0.632	0.608	0.582	0.612	0.606	0.642	0.676	0.538	0.535	0.609	0.815	1	0.564	0.701	0.719	0.609	0.53	0.64	0.722	0.564	0.637	0.7	0.729	0.746	0.676	0.677	0.81	0.553	0.64	0.658
EFP3	0.555	0.637	0.269	0.652	0.579	0.378	0.566	0.613	0.556	0.46	0.506	0.564	1	0.528	0.699	0.538	0.503	0.609	0.626	0.576	0.57	0.672	0.54	0.408	0.574	0.486	0.389	0.504		
EFP4	0.605	0.641	0.549	0.499	0.583	0.357	0.525	0.587	0.345	0.588	0.727	0.701	0.528	1	0.76	0.681	0.506	0.432	0.72	0.675	0.591	0.664	0.665	0.721	0.66	0.512	0.687	0.478	0.672	0.662
R1	0.59	0.682	0.398	0.585	0.648	0.437	0.556	0.621	0.555	0.627	0.692	0.719	0.699	0.76	1	0.775	0.641	0.589	0.711	0.801	0.668	0.617	0.618	0.705	0.589	0.474	0.722	0.397	0.587	0.729
R2	0.473	0.679	0.388	0.494	0.464	0.375	0.577	0.471	0.509	0.646	0.639	0.609	0.538	0.681	0.775	1	0.663	0.604	0.738	0.787	0.69	0.662	0.644	0.703	0.588	0.479	0.713	0.419	0.625	0.618
R3	0.253	0.449	0.35	0.337	0.507	0.252	0.426	0.436	0.422	0.574	0.55	0.52	0.503	0.506	0.641	0.663	1	0.525	0.524	0.683	0.337	0.494	0.373	0.506	0.45	0.486	0.577	0.262	0.382	0.457
R4	0.397	0.46	0.352	0.487	0.489	0.657	0.736	0.347	0.675	0.502	0.55	0.64	0.609	0.432	0.589	0.604	0.525	1	0.6	0.571	0.616	0.597	0.636	0.571	0.534	0.561	0.675	0.398	0.518	0.57
Z1	0.501	0.609	0.54	0.545	0.591	0.457	0.533	0.523	0.455	0.563	0.639	0.722	0.539	0.72	0.711	0.738	0.524	0.6	1	0.75	0.691	0.592	0.774	0.659	0.576	0.493	0.796	0.579	0.775	0.6
Z2	0.388	0.66	0.351	0.461	0.491	0.32	0.493	0.574	0.511	0.6	0.614	0.564	0.604	0.675	0.801	0.787	0.683	0.571	0.75	1	0.669	0.62	0.623	0.639	0.49	0.422	0.717	0.492	0.652	0.651
Z3	0.535	0.616	0.386	0.673	0.318	0.503	0.655	0.492	0.61	0.53	0.684	0.637	0.626	0.591	0.668	0.69	0.337	0.616	0.691	0.669	1	0.651	0.681	0.701	0.539	0.379	0.657	0.425	0.562	0.594
O1	0.583	0.694	0.409	0.606	0.489	0.39	0.551	0.523	0.567	0.577	0.706	0.7	0.576	0.664	0.617	0.662	0.494	0.597	0.592	0.62	0.651	1	0.678	0.773	0.757	0.562	0.645	0.421	0.568	0.627
O2	0.541	0.633	0.38	0.563	0.508	0.475	0.55	0.529	0.43	0.605	0.667	0.729	0.757	0.665	0.618	0.644	0.373	0.636	0.774	0.623	0.681	0.678	1	0.712	0.539	0.414	0.662	0.603	0.784	0.733
O3	0.58	0.69	0.44	0.543	0.467	0.521	0.63	0.625	0.505	0.663	0.715	0.746	0.672	0.721	0.705	0.703	0.506	0.571	0.659	0.639	0.701	0.773	0.712	1	0.712	0.507	0.708	0.527	0.65	0.646
AM1	0.602	0.661	0.443	0.465	0.622	0.372	0.486	0.386	0.469	0.478	0.579	0.676	0.54	0.66	0.589	0.588	0.45	0.534	0.576	0.49	0.539	0.757	0.539	0.712	1	0.72	0.623	0.245	0.491	0.561
AM2	0.521	0.449	0.541	0.333	0.528	0.5	0.569	0.247	0.505	0.339	0.541	0.677	0.408	0.512	0.474	0.479	0.486	0.561	0.493	0.422	0.379	0.562	0.414	0.507	0.72	1	0.691	0.283	0.421	0.499
L1	0.585	0.549	0.588	0.504	0.553	0.581	0.617	0.445	0.531	0.612	0.742	0.81	0.574	0.687	0.722	0.713	0.577	0.675	0.796	0.717	0.657	0.645	0.662	0.708	0.623	0.691	1	0.563	0.638	0.605
L2	0.47	0.413	0.255	0.554	0.363	0.276	0.34	0.439	0.274	0.53	0.441	0.553	0.486	0.478	0.397	0.419	0.262	0.398	0.579	0.492	0.425	0.421	0.603	0.527	0.245	0.283	0.563	1	0.655	0.481
C1	0.532	0.595	0.394	0.46	0.522	0.405	0.47	0.4	0.432	0.623	0.641	0.64	0.389	0.672	0.587	0.625	0.382	0.518	0.775	0.652	0.562	0.568	0.784	0.65	0.491	0.421	0.638	0.655	1	0.679
C2	0.469	0.586	0.396	0.562	0.534	0.427	0.519	0.528	0.611	0.588	0.561	0.658	0.504	0.662	0.729	0.618	0.457	0.57	0.6	0.651	0.594	0.627	0.733	0.646	0.561	0.499	0.605	0.481	0.679	1

Table: 3 Correlation matrix

The starting point of Principal Component Analysis and Factor Analysis is the correlation matrix of the items, and these are presented in the above table 3. The correlation matrix shows the values of 1.000 on the diagonal of the matrix, and these are

preserved in the process of performing a principal component analysis.

In this present study where we are analyzing 30 items, the total variance achieves a value of 30.00.

Items	Mean	Std. Deviation	N
AC1	3.72	1.136	107
AC2	3.80	1.142	107
AC3	3.74	1.010	107
AC4	3.46	1.246	107
AC5	3.75	1.071	107
AC6	3.51	1.100	107
AC7	3.59	1.017	107
AC8	3.39	1.128	107
AC9	3.54	1.103	107
AC10	3.58	.985	107
EFP1	3.98	.979	107
EFP2	4.34	.941	107
EFP3	3.50	1.231	107
EFP4	4.06	.923	107
R1	3.99	.988	107
R2	3.83	1.036	107
R3	3.40	1.137	107
R4	3.59	1.048	107
Z1	3.89	.918	107
Z2	3.71	.966	107
Z3	3.56	1.051	107
O1	3.81	1.072	107
O2	4.10	1.036	107
O3	3.76	.978	107
AM1	3.79	1.011	107
AM2	3.94	.991	107
L1	4.19	.915	107
L2	3.60	1.201	107
C1	4.16	1.005	107
C2	3.76	.881	107

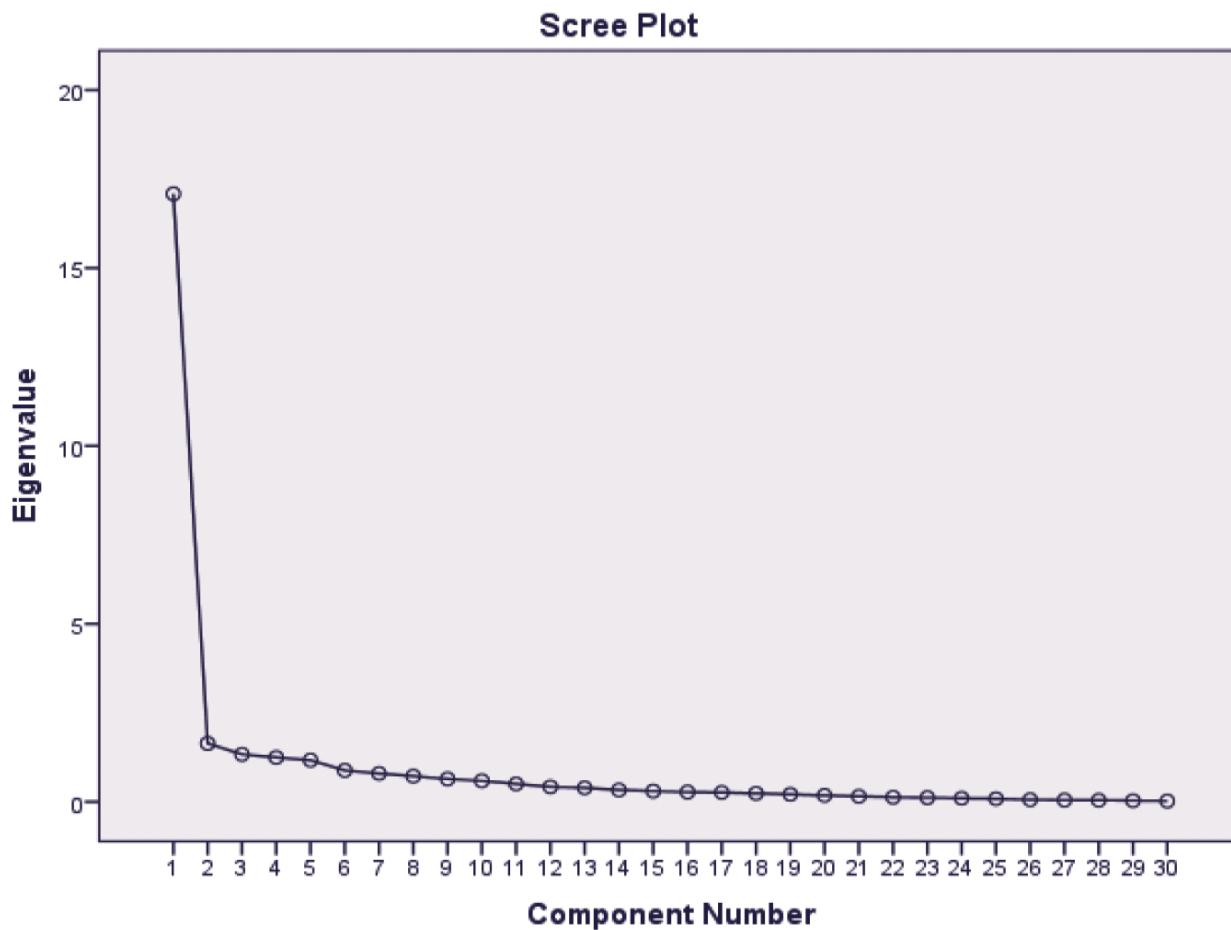
Table: 4 Descriptive Statistics

Descriptive statistics shown in table 4 indicates that we have lost 18 of our 125 cases, giving us a sample size of 107, and so

our sample size seems virtually complete.

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		.861
Bartlett's Test of Sphericity	Approx. Chi-Square	7534.062
	Df	435
	Sig.	.000

Table: 5 KMO and Bartlett's Test


Kaiser-Meyer-Olkin results exceed 0.70 and also the Bartlett's test of sphericity is also statistically significant (Table 5).

Total Variance Explained (Extraction Method: Principal Component Analysis)						
Component	Initial Eigenvalues			Extraction Sums of Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	17.085	56.949	56.949	17.085	56.949	56.949
2	1.640	5.466	62.415	1.640	5.466	62.415
3	1.334	4.445	66.860	1.334	4.445	66.860
4	1.246	4.153	71.013	1.246	4.153	71.013
5	1.170	3.900	74.912	1.170	3.900	74.912
6	.882	2.941	77.853			
7	.796	2.654	80.506			
8	.720	2.400	82.907			
9	.642	2.139	85.045			
10	.589	1.963	87.008			
11	.502	1.672	88.680			
12	.422	1.408	90.088			
13	.391	1.303	91.392			
14	.331	1.104	92.495			
15	.301	1.004	93.500			
16	.273	.910	94.410			
17	.262	.874	95.284			
18	.238	.793	96.076			
19	.209	.697	96.773			
20	.180	.600	97.373			
21	.153	.509	97.881			
22	.128	.428	98.309			
23	.116	.386	98.696			
24	.099	.331	99.027			
25	.086	.287	99.314			
26	.060	.198	99.512			
27	.049	.162	99.675			
28	.043	.145	99.819			
29	.033	.110	99.929			
30	.021	.071	100.000			

Table: 6 Total Variance Explained

Table 6 represents the Total Variance Explained. The first column under the Initial Eigenvalues labelled Total presents the eigenvalues associated with each component. Eigenvalues are one way to express the variance that is explained. In this analysis, there are a total of 30 units of variance. The eigenvalue associated with the first component has a value of 17.085, and $17.085/30.00 = 56.95$, the percentage of variance explained by the first component. Eigenvalues are additive here because the components are orthogonal, and if we summed the column of

Eigenvalues, we would achieve a total of 30.00. The set of columns under the Extraction Sums of squared Loadings provides the same information that we see in the Initial Eigenvalues columns but only for the first five components (because only these have Eigen values of 1.00 or greater). The first five components cumulatively accounted for 74% of the total variance. There were only five components extracted because in the Extraction window, we had retained the default criterion of Based on Eigenvalues greater than 1.

Fig 1: Scree Plot

Fig 1 displays the eigenvalues that are contained in the Initial Eigenvalues column against the components in the full

principal components solution. The function appears to start levelling out at approximately the fifth or sixth component.

Table: 7 Communalities

	Initial	Extraction
AC1	1.000	.762
AC2	1.000	.757
AC3	1.000	.606
AC4	1.000	.726

AC5	1.000	.673
AC6	1.000	.743
AC7	1.000	.736
AC8	1.000	.610
AC9	1.000	.743
AC10	1.000	.672
EFP1	1.000	.719
EFP2	1.000	.837
EFP3	1.000	.794
EFP4	1.000	.789
R1	1.000	.815
R2	1.000	.791
R3	1.000	.785
R4	1.000	.808
Z1	1.000	.800
Z2	1.000	.838
Z3	1.000	.755
O1	1.000	.687
O2	1.000	.793
O3	1.000	.744
AM1	1.000	.741
AM2	1.000	.788
L1	1.000	.826
L2	1.000	.702
C1	1.000	.795
C2	1.000	.636

Table: 7 Communalities

The Communalities of the items are displayed in table 7. The column labeled Initial represents the values on the diagonal of the correlation matrix when the principal component method was applied and run to completion. These values are all **1.000**. One way to interpret these 1's is to think of each of the items as being "fully in" or "Fully captured by" the dimensional structure; because they are fully captured by the dimensional structure, principal components attempts to explain the total amount of variance in the set of items. The column labeled Extraction in the Communalities table describes the percentage of variance of each variable subsumed in the number of factors

that were ultimately extracted (five in the present instance). The five extracted factors cumulatively accounted for 74% of the total variance, and so there is still unexplained variance remaining. The variable whose variance has been captured in the five-component solution is 'Z2' with a communality of .838, and the variable whose variance has been least captured in the five-component solution is 'AC3' with a communality of .606. Despite these differences, however, we judge that all of the items are "participating" substantially in the five-component solution.

Table: 8 Component Matrix

	Component				
	1	2	3	4	5
AC1	700.	046.	470.	082.	206.
AC2	788.	151.-	126.	141.-	278.
AC3	576.	301.	392.	011.-	175.-
AC4	703.	028.-	084.	250.	401.
AC5	698.	079.	318.	224.-	167.
AC6	603.	531.	055.-	290.	104.-
AC7	736.	344.	235.-	115.	087.
AC8	652.	321.-	081.	059.-	269.
AC9	646.	315.	432.-	048.	193.
AC10	721.	296.-	113.-	006.-	228.-
EFP1	827.	055.	097.	021.	150.-
EFP2	876.	175.	140.	094.	108.-
EFP3	740.	062.-	133.-	033.-	472.
EFP4	818.	178.-	239.	130.-	120.-
R1	857.	143.-	095.-	213.-	078.
R2	816.	158.-	216.-	192.-	130.-
R3	641.	063.-	248.-	530.-	168.-
R4	748.	318.	371.-	101.	014.-
Z1	842.	152.-	013.	071.	252.-
Z2	799.	289.-	261.-	193.-	106.-
Z3	791.	015.-	219.-	241.	151.
O1	816.	009.	020.	074.-	124.
O2	818.	172.-	006.	292.	090.-
O3	858.	071.-	001.-	028.	043.
AM1	751.	194.	216.	292.-	091.
AM2	664.	492.	160.	233.-	160.-
L1	861.	125.	007.	001.-	262.-
L2	603.	334.-	099.	457.	090.-
C1	766.	226.-	076.	243.	306.-
C2	785.	090.-	087.-	053.	012.-

The values in the table 8 are the Pearson correlations between each of the items and each of the components. Squaring the correlations and adding them provides some of the information the study described earlier. The sum of the squared correlations down each column is equal to the eigenvalues of that component.

5. CONCLUSION AND RECOMMENDATION

The result depicts that the level of attitude commitment and the sustainable behaviour of the Prosumers impacts the social media marketing. On the basis of results both hypotheses were accepted. This study looks forward for further path analysis to fully validate the relation between user's attitude and sustainable behaviour and social media marketing using Confirmatory factor Analysis and Structural Equation Analysis. The study found that the modern tool of social media helps marketers to reach their target market. It is concluded that the business firms need to reframe their marketing principles in order to survive in the digital era and to gain competitive advantages. They also need to modify their business models by fully understanding the attitude and behavior of the prospective customers, now, Prosumers, towards social media.

ACKNOWLEDGEMENTS

The authors would like to thank everyone.

REFERENCES

[1] M. E. Porter, "Strategy and the Internet", *Harvard Business Review*, 2001.

[2] J. C. Albors Ramos. et al., "New learning network paradigms, Communities of objectives, crowding, wikis and open source", *International journal of information management*, Vol 28, pp.194-202, 2008.

[3] A. R. Thomas, "The end of mass marketing: Or; Why all successful marketing is now direct marketing", *Direct marketing: An international journal*, Vol 1, pp. 6-16, 2007.

[4] W. G. Mangold, & D. J. Faulds, "Social media: The new hybrid element of the promotion mix", *Business Horizons*, Vol 52, pp. 357–365, 2009.

[5] A. M. Kaplan. and M. Haenlein, "Users of the world, Unite- The challenges and opportunities of social media", *Business Horizons*, Vol 53, pp. 59-68, 2010.

[6] Dr L. Vries. S. Gensler. et al., "Popularity of brand post on brand fan pages: An investigation of the effects of social media marketing", *Journal of interactive marketing*, Vol 26, pp. 83-91, 2012.

[7] Y. Chen, S. Fay. et al., "The role of marketing in social media: How online consumer reviews evolve", *Journal of Interactive marketing*, Vol 25(2), pp. 85-92, 2011(b).

[8] R. Agnihotri, P. Kothandaraman. et al., "Brining social into sales: The impact of sales people's social media use on service behaviour and value creation", *Journal of personal selling and sales management*, Vol 32, pp. 333-348, 2012.

[9] Lu.H and Hsiao.K, "The influence of extro/Introversion on the intention to pay for social networking sites", *Information and management*, Vol 47(3), pp. 150-157, 2010.

[10] Bashar and Wasiq, "Effectiveness of social media as a marketing tool: An empirical study", *International journal of marketing, Financial services and management research*, Vol 1(11), pp. 88-99, 2015.

[11] Bajpai et al., "Social Media marketing- Strategies and its impact", *International journal of social sciences and interdisciplinary research*, Vol 1(7), 2012.

[12] Hajli, "A study of the impact of social media on consumers", *International Journal of Market Research*, Vol 56(3), pp. 144-154, 2013.

[13] Dokyun Lee, "The Effect of Social Media Marketing Content on Consumer Engagement: Evidence from Facebook", *Mack Institute Conference*, 2013.

[14] Alves et al., "Social Media Marketing- A literature review and implications", *Psychology and marketing*, Vol 33 (12), pp.1029-1038, 2016.

[15] Prasath Perumal, "Influence of social media marketing on consumer buying decision making process", *SLIS Student research journal*, 2018.

[16] S.S. Siddharth, "Social media as an effective marketing tool: An empirical study", *Indian journal of marketing*, Vol 48(7), 2018.

[17] P. Adesh, et al., "Consumer perception towards social media advertisements: A study done in a semi-Urban city of social India", *Indian Journal of Marketing*. Vol 49(2), 2019.

[18] Manel Hamouda, "Understanding social media advertising effect on consumers' responses: An empirical investigation

of tourism advertising on Facebook", *Journal of Enterprise Information Management*, Vol. 31(3), pp.426-445, 2018.

[19] *A. Gulzar, M. Maqbool, "Impact of social media marketing on consumer buying behaviour-A study", Research Review International Journal of Multidisciplinary, Vol (6), pp. 219-222, 2018.*

[20] *Jill Nash, "Exploring how social media platforms influence fashion consumer decisions in the UK retail sector", Journal of Fashion Marketing and Management: An International Journal, Vol. 23(1), pp.82-103, 2019.*

[21] *F. Mohammad, Al-Zyoud, "Does social media marketing enhance impulse purchasing among female customers-Case study of Jordanian female shoppers", Journal of the academy of business and retail management, Vol 13(2), pp. 135-151, 2018.*

AUTHORS

Dr. Subodh K. Kesharwani, Associate Professor, School of Management Studies, Indira Gandhi National Open University (IGNOU), Maidan Garhi, New Delhi – 110 068
Email id: skesharwani@ignou.ac.in

Dr. Madhulika P Sarkar, Reader, School of Management Studies, Indira Gandhi National Open University (IGNOU), Maidan Garhi, New Delhi – 110 068
Email id: madhulikalal@gmail.com

Shelly Oberoi, Research Scholar, School of Management Studies, Indira Gandhi National Open University (IGNOU), Maidan Garhi, New Delhi – 110 068
Email Id: Shellyoberoi83@gmail.com